dbt Core environments
dbt makes it easy to maintain separate production and development environments through the use of targets within a profile. A typical profile, when using dbt locally (for example, running from your command line), will have a target named dev
and have this set as the default. This means that while making changes, your objects will be built in your development target without affecting production queries made by your end users. Once you are confident in your changes, you can deploy the code to production, by running your dbt project with a prod target.
You can learn more about different ways to run dbt in production in this article.
Targets offer the flexibility to decide how to implement your separate environments – whether you want to use separate schemas, databases, or entirely different clusters altogether! We recommend using different schemas within one database to separate your environments. This is the easiest to set up and is the most cost-effective solution in a modern cloud-based data stack.
In practice, this means that most of the details in a target will be consistent across all targets, except for the schema
and user credentials. If you have multiple dbt users writing code, it often makes sense for each user to have their own development environment. A pattern we've found useful is to set your dev target schema to be dbt_<username>
. User credentials should also differ across targets so that each dbt user is using their own data warehouse user.